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• Conventional quarkonium - 𝑄 "𝑄 bound states
• Simple quantum mechanical system
• Interactions with a hadronic medium

• Exotic quarkonium - multiquark states
• Few examples
• Detailed look at X(3872) and 𝑻𝒄𝒄" in medium

• Outlook: future measurements
• Fixed-target collisions at the LHC
• Electron-Ion Collider

Outline
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Quark Model of Hadrons
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Quark Model of Hadrons

Mesons: 𝑞#𝑞, 𝑞𝑞#𝑞#𝑞, 𝑞𝑞𝑞#𝑞#𝑞#𝑞, …

Baryons: 𝑞𝑞𝑞, 𝑞𝑞𝑞𝑞#𝑞, 𝑞𝑞𝑞𝑞𝑞#𝑞#𝑞, …

Hadrons with >3 quarks have been 
expected since the very beginning.
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Heavy quark production at colliders

Heavy quarks: charm and bottom
Mass ≫ Λ#$% , perturbative methods applicable

Not present in incoming beam particles
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Heavy quark production at colliders

Heavy quarks: charm and bottom
Mass ≫ Λ#$% , perturbative methods applicable

Not present in incoming beam particles

𝑒"
B

B

𝑐 ̅𝑐

Electron-positron colliders (B factories)
𝒆"𝒆& → 𝚼 𝟒𝑺 → 𝑩0𝑩

𝑒&

• Well constrained initial state
• Low backgrounds

• Limited 𝑠 range
• Some states difficult to access
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Heavy quark production at colliders

Heavy quarks: charm and bottom
Mass ≫ Λ#$% , perturbative methods applicable

Not present in incoming beam particles

𝑒"
B

B

Electron-positron colliders (B factories)
𝒆"𝒆& → 𝚼 𝟒𝑺 → 𝑩0𝑩

𝑒&

Hadron colliders (e.g. RHIC, Tevatron, LHC)

p or A p or A

𝑐 ̅𝑐

B

• High 𝑠, large total cross section
• Access to wide range of states
• Initial state (parton+parton) not entirely constrained
• Interactions among produced particles become important

Belle
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Heavy quark production at colliders

Heavy quarks: charm and bottom
Mass ≫ Λ#$% , perturbative methods applicable

Not present in incoming beam particles

𝑒"
B

B
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Heavy quark production at colliders

Heavy quarks: charm and bottom
Mass ≫ Λ#$% , perturbative methods applicable

Not present in incoming beam particles

JHEP 05 (2021) 220

JHEP 1207 (2012) 191
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Quarkonia – bound states of heavy quarks

Solve Schrodinger equation with the potential

Phys. Rev. D 72, 054026 (2005)

𝑸 𝑸
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Quarkonia – bound states of heavy quarks

Calculated Mass
Measured Mass

Rev. Mod. Phys. 90, 015003 (2018)

Solve Schrodinger equation with the potential

Phys. Rev. D 72, 054026 (2005)

𝑸 𝑸
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Quarkonia – bound states of heavy quarks

Calculated Mass
Measured Mass

LHCb JHEP (2019) 2019:35

The most recently discovered charmonium state: 𝜓! 1!𝐷!
Measured mass: 3842.71 ± 0.16 ± 0.12 MeV
Predicted mass:  3849 MeV

Rev. Mod. Phys. 90, 015003 (2018)
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Quarkonia – bound states of heavy quarks

Calculated Mass
Measured Mass

LHCb JHEP (2019) 2019:35

The most recently discovered charmonium state: 𝜓! 1!𝐷!
Measured mass: 3842.71 ± 0.16 ± 0.12 MeV
Predicted mass:  3849 MeV

Incredibly rich structure, accessible 
theoretically and experimentally

Rev. Mod. Phys. 90, 015003 (2018)
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The QCD medium
Diffuse medium (pp,pA) Dense medium (pA, AA)Increasing T, Ncharged

Event displays from ALICE

• Use (mostly) understood quarkonia states to as a calibrated probe of non-perturbative effects 
in dense many-body hadronic systems.  
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Quarkonia in the QCD medium

𝒄%𝒄
c

%𝒄

J/ 𝝍(𝟏𝑺) 𝝍(𝟐𝑺)
𝐸' ≈ 50 𝑀𝑒𝑉𝐸' ≈ 600 𝑀𝑒𝑉
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Quarkonia in the QCD medium
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Quarkonia in the QCD medium
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Increasing charged particle density
Relatively low particle density Relatively high particle density

𝐸' ≈ 50 𝑀𝑒𝑉𝐸' ≈ 600 𝑀𝑒𝑉

PRC 95 3, 034904 (2017)

J/𝝍(𝟏𝑺)

𝝍(𝟐𝑺)



22

JHEP 11 (2018) 194

Quarkonia in the QCD medium
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Quarkonia in the QCD medium

𝒃%𝒃

𝚼(𝟏𝑺)
b

%𝒃

𝚼(𝟐𝑺) b

%𝒃

𝚼(𝟑𝑺)

JHEP 11 (2018) 194
!

⁄
[𝜎
'(
()
)
𝜎 '

(*
))
] +
,

⁄
[𝜎
'(
()
)
𝜎 '

(*
))
] +
+

!
⁄

[𝜎
'(
-)
)
𝜎 '

(*
))
] +
,

⁄
[𝜎
'(
-)
)
𝜎 '

(*
))
] +
+

Pb-going

p-goingPb-going p-going



24

Quarkonia in the QCD medium
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Quarkonia in the QCD medium

𝑸 𝑸

Comover breakup:
• Weakly bound states interact with 

other produced particles and are 
disrupted preferentially more than 
tightly bound states𝑸 𝑸

Phys. Lett. B, 393(3):431, (1997)
Phys. Rev. Lett., 78:1006–1009 (1997)
Phys. Lett. B, 749:98, (2015)
Phys. Rev. C, 97:014909 (2018)
JHEP, 2018(10):94 (2018)
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Quarkonia in the QCD medium

𝑸 𝑸

Comover breakup:
• Weakly bound states interact with 

other produced particles and are 
disrupted preferentially more than 
tightly bound states𝑸 𝑸

𝑸 𝑸

Phys. Lett. B, 393(3):431, (1997)
Phys. Rev. Lett., 78:1006–1009 (1997)
Phys. Lett. B, 749:98, (2015)
Phys. Rev. C, 97:014909 (2018)
JHEP, 2018(10):94 (2018)

𝑸 𝑸
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Quarkonia in the QCD medium

𝑸 𝑸

Comover breakup:
• Weakly bound states interact with 

other produced particles and are 
disrupted preferentially more than 
tightly bound states𝑸 𝑸 𝑸 𝑸

𝑸 𝑸

Phys. Lett. B, 393(3):431, (1997)
Phys. Rev. Lett., 78:1006–1009 (1997)
Phys. Lett. B, 749:98, (2015)
Phys. Rev. C, 97:014909 (2018)
JHEP, 2018(10):94 (2018)

Effect is sensitive to size of bound state and density of medium
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Deuteron production in the QCD medium
Deuteron: weakly bound state of neutron and proton, 𝐸' ≈ 2𝑀𝑒𝑉

Eur. Phys. J. C 80 (2020) 889
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Deuteron production in the QCD medium
Deuteron: weakly bound state of neutron and proton, 𝐸' ≈ 2𝑀𝑒𝑉

Production relative to protons 
increases with system density:

Well described by coalescence models.

Eur. Phys. J. C 80 (2020) 889

p
p

n p

𝒏

n
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• Conventional quarkonium - 𝑄 "𝑄 bound states
• Simple quantum mechanical system
• Interactions with a hadronic medium

• Exotic quarkonium - multiquark states
• Few examples
• Detailed look at X(3872) and 𝑻𝒄𝒄" in medium

• Outlook: future measurements
• Fixed-target collisions at the LHC
• Electron-Ion Collider

Outline
We have identified 
effects that depend on 
binding energy/radius 
of state and QCD 
medium properties
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Exotic hadrons

Calculated Mass
Measured Mass

Rev. Mod. Phys. 90, 015003 (2018)𝑸 𝑸
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𝑸 𝑸
Exotic hadrons

20+ states containing heavy quarks have been discovered 
since 2003 that do not fit typical quarkonium properties:

Collectively known as “XYZ” particles

Rev. Mod. Phys. 90, 015003 (2018)
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𝑸 𝑸
Exotic hadrons

20+ states containing heavy quarks have been discovered 
since 2003 that do not fit typical quarkonium properties:

Collectively known as “XYZ” particles

Rev. Mod. Phys. 90, 015003 (2018)

Compact 
tetraquark/pentaquark

u 𝒄
0𝒖0𝒄

Diquark-diquark
PRD 71, 014028 (2005)
PLB 662 424 (2008)

u
𝒄
0𝒖

0𝒄

Hadrocharmonium/
adjoint charmonium
PLB 666 344 (2008)
PLB 671 82 (2009)
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𝑸 𝑸
Exotic hadrons

20+ states containing heavy quarks have been discovered 
since 2003 that do not fit typical quarkonium properties:

Collectively known as “XYZ” particles

Rev. Mod. Phys. 90, 015003 (2018)

Compact 
tetraquark/pentaquark

u 𝒄
0𝒖0𝒄

Diquark-diquark
PRD 71, 014028 (2005)
PLB 662 424 (2008)

u
𝒄
0𝒖

0𝒄

Hadrocharmonium/
adjoint charmonium
PLB 666 344 (2008)
PLB 671 82 (2009)

Hadronic Molecule

PLB 590 209 (2004)
PRD 77 014029 (2008)
PRD 100 0115029(R) (2019)

Mixtures of exotic + conventional states
PLB 578 365 (2004)
PRD 96 074014 (2017)

Multiple structures likely necessary to fully 
describe all states and their properties
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Example: 𝑷𝒄± pentaquarks
Select daughters from the decay
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Select daughters from the decay
PRL 122 222001 (2019)

Example: 𝑷𝒄± pentaquarks
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Select daughters from the decay

Masses are close to meson+baryon
thresholds – candidate hadronic molecule

Example: 𝑷𝒄± pentaquarks
PRL 122 222001 (2019)
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Example: Charged Tetraquark: 𝒁𝒄±

Select daughters from the decay

𝐵! → 𝜓(2𝑆)𝐾"𝜋#
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Example: Charged Tetraquark: 𝒁𝒄±

PRL 112 222002 (2014)𝐵! → 𝜓(2𝑆)𝐾"𝜋#
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Example: Charged Tetraquark: 𝒁𝒄±

Select daughters from the decay

Charged and contains 𝒄"𝒄 pair:
minimal quark content 𝒄"𝒄𝒒$𝒒

Mass not close to 
hadron+hadron
threshold –
candidate compact 
tetraquark

PRL 112 222002 (2014)𝐵! → 𝜓(2𝑆)𝐾"𝜋#
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An enduring puzzle: X(3872)
Belle Collaboration
PRL 91 262001 (2003)

𝑿 𝟑𝟖𝟕𝟐

𝝍 𝟐𝑺

• The first exotic hadron, discovered in 𝑱/𝝍𝝅.𝝅/mass spectrum 
from B decays by Belle in 2003 
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• LHCb measured quantum numbers  (PRL 110 222001 2013)
§ Incompatible with expected charmonium states  
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An enduring puzzle: X(3872)
Belle Collaboration
PRL 91 262001 (2003)

𝑿 𝟑𝟖𝟕𝟐

𝝍 𝟐𝑺

• The first exotic hadron, discovered in 𝑱/𝝍𝝅.𝝅/mass spectrum 
from B decays by Belle in 2003 

• LHCb measured quantum numbers  (PRL 110 222001 2013)
§ Incompatible with expected charmonium states  

• Mass is consistent with sum of D0 and 𝑫*0 masses:

VERY small binding energy
VERY large radius, ~10 fm

𝑫𝟎𝑫 ∗𝑴𝒐𝒍𝒆𝒄𝒖𝒍𝒆
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An enduring puzzle: X(3872)
Belle Collaboration
PRL 91 262001 (2003)

𝑿 𝟑𝟖𝟕𝟐

𝝍 𝟐𝑺

• The first exotic hadron, discovered in 𝑱/𝝍𝝅.𝝅/mass spectrum 
from B decays by Belle in 2003 

• LHCb measured quantum numbers  (PRL 110 222001 2013)
§ Incompatible with expected charmonium states  

• Mass is consistent with sum of D0 and 𝑫*0 masses:

• Large prompt production fraction (~80%) – inconsistent with D meson 
coalescence in pp* 

VERY small binding energy
VERY large radius, ~10 fm

𝑫𝟎𝑫 ∗𝑴𝒐𝒍𝒆𝒄𝒖𝒍𝒆 𝑪𝒐𝒎𝒑𝒂𝒄𝒕 𝒕𝒆𝒕𝒓𝒂𝒒𝒖𝒂𝒓𝒌
u 𝒄
)𝒖)𝒄

Tightly bound via color 
exchange between diquarks

Small radius, ~1 fm

*Tension in theoretical literature:
c.f. Bignamini, Grinstein et al

PRL 103 162001 (2009)
Artoisenet, Braaten 

PRD 81 114018 (2010)
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Probing exotic structure with comovers at LHCb
JINST 3 (2008) S08005

Int. J. Mod. Phys. A 30, 1530022 (2015)

Vertex detector (VELO):
-Separation of prompt and b-
decay production
-Number of VELO tracks 
gives measure of event 
activity

Two RICH detectors:
-Pion identification

Muon System:
-Layers of absorber/tracking
-Muon hardware trigger

𝑿 𝟑𝟖𝟕𝟐 → 𝑱/𝝍𝝅"𝝅#
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Probing exotic structure with comovers at LHCb

Event display of                         candidate𝑩𝒔𝟎 → 𝝁"𝝁#

Production in b-decays:
• Hadrons containing b travel down the 

beampipe and decay away from the 
primary vertex and decay in vacuum

• X(3872) from decays not subject to 
further interactions

• Control sample

Prompt production:
• X(3872) produced at collision vertex 

can be subject to further interactions 
with co-moving particles produced in 
the event

• Potentially subject to breakup effects
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X(3872) measurement at LHCb

𝝍 𝟐𝑺
𝐗 𝟑𝟖𝟕𝟐

Reconstruct the 𝝁"𝝁# 𝝅"𝝅# final state from the decays:

𝑿 𝟑𝟖𝟕𝟐 → 𝑱/𝝍(→ 𝝁"𝝁#)𝝆(→ 𝝅"𝝅#)

𝝍 𝟐𝑺 → 𝑱/𝝍(→ 𝝁"𝝁#)𝝅"𝝅#

Direct comparison between conventional charmonium
𝝍 𝟐𝑺 and exotic 𝑿 𝟑𝟖𝟕𝟐 via ratio of cross sections:

PRL 126, 092001 (2021)

Select collisions of various charged particle multiplicity 
to vary density of comoving medium 
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X(3872)/ψ(2S) vs multiplicity 
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Prompt component:
Increasing suppression of 𝐗 𝟑𝟖𝟕𝟐 production 
relative to𝝍 𝟐𝑺 as multiplicity increases

b-decay component:
Totally different behavior: no significant change 
in relative production, as expected for decays in 
vacuum.  Ratio is set by b decay branching 
ratios.

PRL 126, 092001 (2021)
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 (geometric)
   Molecule

X(3872)/ψ(2S) 

Prompt component:
Increasing suppression of 𝑿 𝟑𝟖𝟕𝟐 production 
relative to𝝍 𝟐𝑺 as multiplicity increases

b-decay component:
Totally different behavior: no significant change 
in relative production, as expected for decays in 
vacuum.  Ratio is set by b decay branching 
ratios.
Calculations from EPJ C 81, 669 (2021)

Molecular X(3872) with large radius 
and large comover breakup cross 
section is immediately dissociated

Break-up cross section:

PRL 126, 092001 (2021)
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 (geometric)
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X(3872)/ψ(2S) 

Prompt component:
Increasing suppression of 𝐗 𝟑𝟖𝟕𝟐 production 
relative to𝝍 𝟐𝑺 as multiplicity increases

b-decay component:
Totally different behavior: no significant change 
in relative production, as expected for decays in 
vacuum.  Ratio is set by b decay branching 
ratios.

Molecular X(3872) with large radius 
and large comover breakup cross 
section is immediately dissociated

Coalescence of D mesons into 
molecular X(3872) increases ratio 

Break-up cross section:

PRL 126, 092001 (2021)

Calculations from EPJ C 81, 669 (2021)
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(coalescence)
   Molecule

  tetraquark
   Compact

 (geometric)
   Molecule

X(3872)/ψ(2S) 

Prompt component:
Increasing suppression of 𝐗 𝟑𝟖𝟕𝟐 production 
relative to𝝍 𝟐𝑺 as multiplicity increases

b-decay component:
Totally different behavior: no significant change 
in relative production, as expected for decays in 
vacuum.  Ratio is set by b decay branching 
ratios.

Molecular X(3872) with large radius 
and large comover breakup cross 
section is immediately dissociated

Compact tetraquark of size 1.3 fm
gradually dissociated as multiplicity 
increases – consistent with data 

Coalescence of D mesons into 
molecular X(3872) increases ratio 

Break-up cross section:

PRL 126, 092001 (2021)

Calculations from EPJ C 81, 669 (2021)
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  tetraquark
   Compact
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X(3872)/ψ(2S) 

Prompt component:
Increasing suppression of 𝐗 𝟑𝟖𝟕𝟐 production 
relative to𝝍 𝟐𝑺 as multiplicity increases

b-decay component:
Totally different behavior: no significant change 
in relative production, as expected for decays in 
vacuum.  Ratio is set by b decay branching 
ratios.

Molecular X(3872) with large radius 
and large comover breakup cross 
section is immediately dissociated

Compact tetraquark of size 1.3 fm
gradually dissociated as multiplicity 
increases 

Coalescence of D mesons into 
molecular X(3872) increases ratio 

Calculations from arXiv:2006.15044
Break-up cross section:

DOE NP highlight
PRL 126, 092001 (2021)
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Comover model: constituent interaction

Different method of calculating breakup cross section:
Braaten, He Ingles, Jiang Phys. Rev. D 103, 071901 (2021)

Breakup cross section approximated as sum 
of cross section for molecule constituents:

Data is consistent with this 
molecular interpretation.  
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Comover model: constituent interaction

Different method of calculating breakup cross section:
Braaten, He Ingles, Jiang Phys. Rev. D 103, 071901 (2021)

If breakup is due to scattering of individual constituents, would all 𝑐 ̅𝑐 have equal suppression?
Not observed in charmonium or bottomonium systems.  

Breakup cross section approximated as sum 
of cross section for molecule constituents:

Data is consistent with this 
molecular interpretation.  
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Newest LHCb exotic: 𝑻𝒄𝒄.

arXiv: 2109.01038, 2109.01056 
New state consistent with 𝑐𝑐7𝑢𝑑̅ tetraquark recently found:

Similar to X(3872), mass quite close to DD threshold
Big difference: contains 𝑐𝑐 or ̅𝑐 ̅𝑐, rather than 𝑐 ̅𝑐
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Newest LHCb exotic: 𝑻𝒄𝒄.

arXiv: 2109.01038, 2109.01056 
New state consistent with 𝑐𝑐7𝑢𝑑̅ tetraquark recently found:

Similar to X(3872), mass quite close to DD threshold
Big difference: contains 𝑐𝑐 or ̅𝑐 ̅𝑐, rather than 𝑐 ̅𝑐

Yield favors higher multiplicity collisions, reminiscent of deuteron. 
Evidence for hadronic molecule structure?
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New Particles at the LHC 

https://www.nikhef.nl/~pkoppenb/particles.html
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• Conventional quarkonium - 𝑄 4𝑄 bound states
• Simple quantum mechanical system
• Interactions with a hadronic medium

• Exotic quarkonium - multiquark states
• Few examples
• Detailed look at X(3872) and 𝑻𝒄𝒄" in medium

• Outlook: future measurements
• Fixed-target collisions at the LHC
• Electron-Ion Collider

Outline
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Fixed target configuration - SMOG63

System for Measurement of Overlap with Gas
A unique capability at LHCb: inject noble gas into beampipe
Originally intended for precise luminosity measurements:

Precision on 2012 pp data is ±1.16%, best ever at bunched beam collider
JINST 9 P12005 (2014) 

Reconstructed beam-gas 
vertices inside VELO

Measurements so far: 
Charm production in p+He and p+Ar: PRL 122 132002 (2019) 

Antiproton production in p+He: PRL 121 222001 (2018)
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Near future: SMOG II at LHCb

• Upgraded SMOG 2 system at LHCb allows greatly increased rates of beam+gas collisions at LHCb
• Variable target gases – allows hadronic environment to be adjusted (H, He, …, Xe)
• Access to exotic states near RHIC energies 
• Can potentially run concurrent with proton+proton collisions – large data sets

https://cds.cern.ch/record/2673690/files/LHCB-TDR-020.pdf
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SMOG II installed at LHCb
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Future facility: Electron-Ion Collider
EIC site selection at BNL announced Jan 2020, 
CD-1 July 2021, operational ~2030

Charm production inside the nucleus probes:
• Parton structure of nucleons
• Parton distribution function modifications
• QCD energy loss

𝑠~20 − 100 𝐺𝑒𝑉
e+p, e+O, e+Al, e+Cu, e+Au, e+U,… 
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Future facility: Electron-Ion Collider
EIC site selection at BNL announced Jan 2020, 
CD-1 July 2021, operational ~2030

Charm production inside the nucleus probes:
• Parton structure of nucleons
• Parton distribution function modifications
• QCD energy loss

𝑠~20 − 100 𝐺𝑒𝑉
e+p, e+O, e+Al, e+Cu, e+Au, e+U,… 

Hadronization inside the nucleus becomes 
important

Vitev, 1912.10965
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Filtering States with the Nucleus

• Quarkonia is subject to breakup as it crosses the nucleus – suppression due to 
disruption of the 𝑄 :𝑄 pair 

68

• Larger (weakly bound) states sample a larger volume of the nucleus while passing through – larger absorption 
cross section

• Explains trends observed in fixed target data at FNAL, SPS 
• Test idea via MC simulation of propagation through nucleus for three cases: 

• 𝜓 2𝑆 with radius 0.87 fm, compact X(3872) with radius 1 fm, molecular X(3872) with radius 7 fm

Arleo, Gossiaux, Gousset, Aichelin PRC 61 (2000) 054906



69

Relative modification of X(3872)/ 𝜓 2𝑆 at EIC69

• Little difference in suppression between 
model of compact X(3872) and 𝝍 𝟐𝑺 , as 
expected.

• Large difference between model of 
molecular X(3872) and 𝝍 𝟐𝑺 .

𝑅;<
= >?@A

𝑅;<
B AC = :

𝜎;<=

𝜎;<
B

𝜎;D=

𝜎;D
B

Matt Durham

arXiv:2103.05419

X(3872) is only an example, model equally applicable for other exotics accessible at EIC 



70

Summary

• Hadron spectroscopy is a thriving field.  Quark model is expanding.

• Interactions of exotics with other particles give us new ways to probe and 
constrain their structure that cannot be accessed in B-decays 

• Multiple future experimental facilities are on the horizon.

Los Alamos is supported by the US Dept. of Energy/Office of Science/Office of Nuclear Physics
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BACKUPS
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Exotic X(3872) in dense medium (PbPb)
CMS-PAS-HIN-19-005

Prompt X(3872)/ 𝜓(2S) = 1.10 ± 0.51 ± 0.53 in PbPb at 5 TeV
Prompt X(3872)/ 𝜓(2S)  ≈ 0.1 in pp at 8 TeV

72

Recombination of X(3872) 
at pT > 15 GeV?
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Exotic X(3872) in dense medium (PbPb)
CMS-PAS-HIN-19-005

Prompt X(3872)/ 𝜓(2S) = 1.10 ± 0.51 ± 0.53 in PbPb at 5 TeV
Prompt X(3872)/ 𝜓(2S)  ≈ 0.1 in pp at 8 TeV

73

Intriguing data!  Inconclusive with these uncertainties.

Transport model gives 
larger yield for compact 
tetraquark vs. molecule 
by factor of ~2 in PbPb

Will be tested with 
future PbPb data sets.
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Propagation through Nuclei 74

• In Monte Carlo simulation, populate a Glauber nucleus, 
using parameters from PHOBOS model: arXiv:1408.2549

• Randomly select starting point for 𝑄 "𝑄 pair 

• Propagate 𝑄 "𝑄 along z axis 

• Following model of Arleo et al. in Phys Rev C, 61 054906 (2000), expand 𝑄 "𝑄 radius as a function of time:

• Calculate radius-dependent cross section:

• If the state comes within a distance of 𝜎! ̅!/𝜋 to a nucleon, consider it disrupted.

• Three cases: 𝜓 2𝑆 with radius 0.87 fm, compact X(3872) with radius 1 fm, molecular X(3872) with radius 7 fm

Matt Durham
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𝒄
'𝒄

c

'𝒄

J/𝝍

𝝍(𝟐𝑺)

Filtering States with the Nucleus

• At the EIC, hadronization inside the nucleus becomes an important effect (Vitev, 1912. 
10965)

• Quarkonia is subject to breakup as it crosses the nucleus – suppression due to 
disruption of the 𝑄 :𝑄 pair

75

E866, PRL 84 (2000) 3256-3260

• Larger (weakly bound) states sample a larger volume of the nucleus while passing through – larger absorption 
cross section

• Explains trends observed in fixed target data at FNAL, SPS 
• As expected, fails at RHIC (hadronization occurs outside nucleus) 

Arleo, Gossiaux, Gousset, Aichelin PRC 61 (2000) 054906

NA50, EPJC 48 329 (2006)

PHENIX PRL 111 202301 (2013)
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Satz hep-ph/0512217
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Quarkonia in the QCD medium

𝑸 𝑸

𝑸 𝑸
Dissociation via interactions 

with comoving particles

𝑸 𝑸
𝑸

𝑸

𝑸 𝑸

𝑸

𝑸

Production via coalescence

𝑸 𝑸

Experimentally, we use different collision systems/kinematic regions to 
prepare environments where different non-perturbative effects dominate.   

Diffuse medium (pp,pA) Dense medium (pA, AA)Increasing T, Ncharged

Suppression via color 
screening
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Separate prompt/non-prompt production

Simultaneous fit to mass and proper time in each multiplicity bin


